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Reconstructing Reflection Maps using a
Stacked-CNN for Mixed Reality Rendering
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Abstract—Corresponding lighting and reflectance between real and virtual objects is important for spatial presence in augmented and
mixed reality (AR and MR) applications. We present a method to reconstruct real-world environmental lighting, encoded as a reflection
map (RM), from a conventional photograph. To achieve this, we propose a stacked convolutional neural network (SCNN) that predicts
high dynamic range (HDR) 360° RMs with varying roughness from a limited field of view, low dynamic range photograph. The SCNN is
progressively trained from high to low roughness to predict RMs at varying roughness levels, where each roughness level corresponds to
a virtual object’s roughness (from diffuse to glossy) for rendering. The predicted RM provides high-fidelity rendering of virtual objects to
match with the background photograph. We illustrate the use of our method with indoor and outdoor scenes trained on separate
indoor/outdoor SCNNs showing plausible rendering and composition of virtual objects in AR/MR. We show that our method has improved
quality over previous methods with a comparative user study and error metrics.

Index Terms—Light estimation, reflection map, environment map, image-based lighting, deep learning, mixed reality

1 INTRODUCTION

Augmented and mixed reality (AR and MR) is becoming ubiquitous
for both mobile and tethered use. In this field, the real world blends
with the virtual, which can be observed through a mobile display
or dedicated device such as a head-mounted display. One of the
core challenges in AR/MR is the seamless blending of virtual
objects such that they appear to be physically situated in the real
world environment. This plays an important role for users to feel
spatially present with the inserted object. Scene understanding
and inverse rendering is often used to solve this problem, which
involves digitizing real world elements (e.g., lighting, material
models, geometry, etc.) from a photograph. These elements are
then used to render virtual objects such that they seamlessly blend
into the photograph. Of particular interest in this paper is predicting
the environmental lighting conditions, encoded as a reflection map
(RM), which exists outside the field of view of a conventional
photograph.

The environmental lighting is often stored as an environment
map (EM) - a 360° high dynamic range (HDR) image used for
illuminating and compositing virtual objects into photographs
for film and mixed reality. Capturing an EM involves taking
photographs on site, in multiple directions with varying exposure
levels, and stitching them together to form the HDR 360° texture.
While the EM can be used for lighting directly, a common technique
in real-time graphics (including AR/MR) is to encode the EM as
reflectance. This is done by pre-convolving the EM with a material,
and storing the convolved result in another 360° texture, referred
to as an RM [1]. The RM is then used as a lookup table to
efficiently render virtual objects. Multiple RMs can be encoded
to accommodate varying material roughness (specular, glossy,
and diffuse). Predicting RMs covering 360° using a conventional
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photograph is challenging as it requires hallucinating environmental
details from a limited field of view while also estimating the
dynamic range required for HDR lighting.

Recent methods have used deep learning to predict parametric
[2][3][4] and non-parametric [5][6][7][8] EMs from a photograph.
The parametric models are able to model outdoor day time lighting
or diffuse indoor lighting, but have limited ability to produce natural
reflections for low roughness materials. The non-parametric models
are able to regress EMs with textural details for reflections, however
we found that predicting a non-parametric EM is challenging to
model directly and is prone to error.

Instead, we propose a novel stacked convolutional neural
network (SCNN) structure that progressively predicts HDR 360°
RMs from a standard limited field of view, low dynamic range
(LDR) photograph (Figure 1). Each CNN in the stack minimizes the
error of a specific material reflectance roughness level (including
high roughness diffuse to low roughness glossy). This allows for
the CNN to accurately predict RMs corresponding to the roughness
level of the virtual object being rendered. The stack is progressively
trained from high to low roughness. The progressive approach
allows the higher accuracy of the high roughness RM prediction
to propagate through to lower roughness networks, improving the
prediction accuracy across all roughness levels. We show that
predicting the RMs performs better than predicting the EM with
a comparative user study as well as error metrics against recent
EM prediction methods [4][8]. Since we are able to predict the
RM directly, this also contributes towards real-time rendering in
AR/MR [9].

To the best of our knowledge, this is the first time that lighting,
encoded as RMs, has been predicted from conventional photographs
with no exemplar object or expected known geometry. The main
contributions of our paper are summarized as follows:

o A progressively trained SCNN that predicts HDR RMs from
a conventional, limited field of view, LDR photograph.

« We predict RMs from each CNN in the stack, which then
can be used directly for rendering virtual objects with the
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Fig. 1: Left to right: an input photograph taken by a conventional camera, the trained SCNN, the predicted 360° reflection maps (RMs)
from three roughness levels in the SCNN, rendering and composition using the predicted RMs, and two more examples of an indoor and
outdoor scene. Top-right virtual objects: teapot, bunny, and armadillo. Bottom-right virtual objects: park bench and traffic cone.

corresponding roughness value. We implement a server-
client system, where the server manages the RM prediction,
rendering, and composition, and the client handles the
display and user interface.

o We evaluate our SCNN with both indoor/outdoor scenes
with a comparative user study and error metrics, showing
that our method outperforms the previous work.

2 RELATED WORK

Inverse lighting is the fundamental technique underpinning the
research aims of this paper. Our literature survey focuses on
environmental lighting, and predicting environment maps from
photographs.

2.1

AR/MR rendering involves lighting and composition of virtual
objects into photographs. A conventional, limited field of view,
LDR photograph on its own does not provide environmental
lighting information required for high quality illumination and
reflections. Debevec et al. [10] proposed to address this by storing
the surrounding environment into a 360° HDR EM. Image-based
lighting (IBL) is able to use EMs to realistically render virtual
objects such that they match the illumination of the real-world
environment. Differential rendering [11] is then used to composite
virtual objects, including their shadows and colour bleeding, into
photographs. While this process is computationally expensive,
various optimisations can be made to accommodate for real-time
graphics (required for AR/MR). Environment maps can be pre-
convolved and stored as RMs by pre-computing diffuse and glossy
reflections and storing the result in a 360° HDR texture [1]. The
RMs are then used as a lookup table for efficient rendering. Rhee
et al. [9][12] used light detection in combination with differential
rendering and reflection mapping to achieve real-time AR/MR
rendering. Mobile friendly implementations capture RGB-D images
by moving the mobile camera around while storing the pixels into
an environment map [13][14]. Alternatively, a client/server setup
where multiple cameras stream the environmental lighting to a

Environmental Lighting for AR/MR

mobile device [14]. While EMs or RMs provide realistic real-world
lighting in offline and real-time computer graphics, they are often
not available with a single conventional RGB photograph.

2.2

The process of inverse lighting involves working backwards from a
photograph to the lighting that induced the illumination conditions
in the photograph [15]. Going from a conventional limited field-of-
view photograph to a full panoramic image is a challenging problem
as it requires hallucinating details that are not observable within
the photograph. Early work created an EM from a photograph
by stretching the photograph into a 360° texture [16]. Since the
photograph is LDR, it also requires inverse tone-mapping [17] to
recover the HDR light information. Karsch et al. [18] estimated
HDR EMs by using texture information in the photograph and
finding a texturally similar EM from a database. While these
methods are able to recover HDR EMs, they are highly prone to
error as they do not use illumination cues. To recover high quality
HDR EMs from a conventional photograph, a specular chrome
ball [1] can be used. When a chrome ball is not present in the
photograph, alternate illumination cues (e.g., shadows, highlights)
within the photograph need to be used instead.

Prior work has used machine learning approaches that use
a foreground object exhibiting unknown reflectance as input to
estimate the environmental lighting [19], the object’s appear-
ance [20][21], or decomposes it into reflectance and illumina-
tion [22]. Lalonde et al. [23] and Liu et al. [24] were able to
recover outdoor lighting using a combination of illumination
cues within the photograph. Outdoor lighting was later improved
[3][4] using convolutional neural networks (CNNs) by estimating
parameterized outdoor EMs [25]. While the parameterized model
provides sufficient directional lighting data, it does not contain
textured reflection information of the surrounding environment,
such as buildings or trees. This was partially addressed by
considering weather conditions [6]. Gardner et al. [8] were able
to predict indoor EMs using a CNN by training on a large LDR
and HDR EM dataset. They used spatial warping to increase
the size of the dataset and to also account for spatially varying

Inverse Lighting
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Fig. 2: Overview of Stacked CNN architecture.

lighting within indoor scenes. This work also used a progressive
learning technique, though it is focused on the EM’s high frequency
lighting, as opposed to the environmental lighting convolved with a
material. Indoor lighting was then extended to predicting spherical
harmonics for efficient rendering [2] but was limited in producing
high frequency information. Song et al. [7] hallucinated complete
high resolution texture information for indoor EMs while also
considering lighting conditions, enabling mirror-like reflections
with a natural appearance. Legendre et al. [5] trained on both
indoor and outdoor data using LDR video. By inserting three
lighting calibration balls (specular, glossy, diffuse), they were able
to infer HDR information in the training process. Our goal is similar
to these methods, except we focus on obtaining the reflections
directly by predicting RMs instead of EMs. This idea is motivated
by Ramamoorthi et al. [26], which showed that high frequency
light information is dependent on the available material properties
in the photograph. By predicting the roughness levels directly, we
are able to ensure the highest prediction quality possible for a given
roughness level. Furthermore, we take advantage of using RMs
with a progressive structure to improve the quality.

3 PROGRESSIVELY LEARNING REFLECTION MAPS

The objective of our method is to recover HDR RMs from a limited
field of view LDR photograph. Previous approaches predict the
EM, then convolve it to the specified material roughness during
the rendering process. Instead, we progressively predict RMs using
a stack of multiple CNNs (SCNN), moving from high to low
roughness predictions (Figure 2). This follows the general idea
of curriculum learning [27][28], which is the process of solving
easier problems first and gradually increasing the difficulty. To
this end, we demonstrate that recovering a high roughness RM
directly produces more accurate results than predicting the EM,
which is then mathematically convolved. This supports the idea
that predicting a low roughness RM is an easier problem to solve,
motivating a curriculum learning strategy. We refer to Hacohen
and Weinshall [29] which provides an empirical investigation and
theoretical analysis behind this strategy. This idea also provides the
SCNN with more data (rather than learning from just the EM, but
also the corresponding RMs).

The progressive SCNN setup has three distinct advantages. First,
since we train our CNNs directly for each roughness level, the
network is able to minimize the error for each roughness level, pro-
viding higher accuracy results than predicting the EM which is then
convolved. Second, the progressive structure allows subsequent
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Fig. 3: Overview of a single CNN architecture.

CNNs in the stack to benefit from the improved accuracy from the
previous higher roughness CNN, thus propagating the improved
accuracy throughout stack. Third, the predicted RM for each CNN
can be used directly for efficient rendering with accurate reflectance
for each roughness level. In summary, directly predicting RMs, as
opposed to predicting an EM which is later convolved, produces
higher accuracy results and requires less computation time in the
rendering process.

We formulate our learning process in Equation 1, where 7 is
the input limited field of view, low dynamic range photograph,
Gupr,r 1s the 360° HDR RM having the roughness level 7, and ©,
is the parameter set of the single CNN for the roughness level r.
We optimize {®,} for the whole SCNN in a progressive way, from
the highest roughness value to the lowest roughness value. Here,
Ar is the step between neighboring roughness levels. To optimize
the parameters ®, for a single CNN, the parameters from its upper
roughness level ®, 4, are used to initialize the mapping g from /
to a predicted HDR RM, which is implemented by a single CNN
model (Figure 3)

0 = arg@min L (Gupryr; 8((1,0,44,);0,)), )
where . is the loss function defined in equation 4. The SCNN
architecture is able to train with less difficulty on high roughness
RMs and propagate the improvements through to lower roughness
RMs.

3.1 Progressively Trained Stacked CNNs

Our SCNN consists of a series of CNNs in which a higher
roughness network is stacked upon its neighboring lower roughness
network (Figure 2). The RMs at varying roughness levels are
intrinsically related to one another, where higher roughness RMs
contain information about the ambient tones and directionality of
the light sources, which gradually converge to more specific tones
and directions at lower roughness levels.

Taking the dependencies among RMs with varying roughness
into consideration, we design our SCNN to train using a reflection
model which has a roughness parameter in the range [0,1]. In
our tests we use the Phong reflection model [30], where the
specular power exponent is % — 1, and & = roughness® [31].
This remapping ensures that the specular exponent is at least
1. When computing RMs, the view vector is the same as the
normal, and as such the above is equivalent to Lambertian diffuse
when roughness = 1.0. Note that other reflection models could be
used in place of the Phong model, as long as it supports a way
of progressively changing its roughness (e.g., GGX [32]). The
SCNN trains from the highest roughness level (roughness = 1.0),
as we found it is easier to learn the low frequency lighting
and textures. After the higher roughness model has trained, we
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transfer its network parameters to the adjacent lower roughness
network. Then the following lower roughness network fine-tunes
the initialized model toward higher frequency RM. This allows the
lower roughness model to focus on additional high frequency
information rather than modeling the data from scratch. We
continue the progressive pattern until the lowest roughness level
(roughness=0.1). After training each CNN in the stack, each CNN
can be used separately to predict RMs at different roughness
levels. We refer to this training scheme as “progressive”, while the
networks which train without the progressive parameter transfer
as “isolated”. Our experiments show that the SCNN has better
accuracy than isolated CNNs across all roughness levels.

We could theoretically model our SCNN to predict any arbitrary
roughness level with a roughness value in the range [0,1]. But
in practice, we have a finite memory footprint, so we generate a
discrete number of models. In real-time graphics, interpolating RMs
only requires a few levels (e.g., six was used by Rhee et al. [9]),
where continuous roughness values are supported by interpolating
between the discrete levels. In this paper, we experimented with a
roughness step Ar = 0.1, from 1.0 to 0.1. We tested that these 10
models are sufficient for smooth interpolation, though this could
be optimized further with fewer levels.

3.2 Network Architecture for each CNN

For each CNN in the stacked architecture, the input is a limited field
of view image. In out tests, we experimented with two different
resolutions (widthxheight): 192x 192, and 135 x240 portrait image
to match the input from mobile devices). After going through a
series of convolutional layers, ResNet blocks and a full-connection
layer, the input is encoded into a 1024-dimensional latent vector
which serves as the compressed lighting feature vector. The decoder
takes this latent vector as the input, upsampling these features using
several deconvolution layers and expanding them into the RM.

The sizes and depths of the feature maps for each layer is shown,
for a single CNN architecture, in Figure 3. A stride step of 2 is used
to downsample/upsample the feature maps where the neighboring
layers have different sizes. For the encoder, the first layer is a
standard full-conv (in order to distinguish between “convolution”
used for both the RM and the CNN operation, we use “conv” for
the latter) layer, with a kernel size of 7 and a filter number of
64. The following 12 layers have residual connections [33] with
a kernel size of 5 for the first residual block and a kernel size
of 3 for the other 5 residual blocks. For the decoder, the encoder
output will first go through one full-connection layer, and through
4 deconvolution layers followed by one conv layer with 3 channels
to generate the final RM with a resolution of 192x96. The ELU
activation function [34] and batch normalization [35] are used on
all encoder and decoder layers.

3.3 Data Preparation

To generate input-output pairs for training, a photograph is paired
with an RM that is filtered to a roughness level. To do this,
photographs are extracted from a 360° panoramic image in 8
different directions, uniformly distributed along the azimuth angle
(horizon line). The zenith angle is chosen randomly between 90°
and 135°, which is biased toward looking toward the floor - a typical
angle for mixed reality applications where objects are composited
onto the ground. For each of the 8 photographs, we rotate the
panorama such that the corresponding extracted photograph is
centred, removing any complexity in rotational variation during the

4

training process. Finally, to generate the RMs, the centred panorama
is filtered at 10 different roughness levels. This produces a set of 8
photographs, where each photograph has 10 corresponding RMs.
Our network structure can support any material model which is
able to convolve from low to high frequency reflectance.

We apply our networks to both indoor and outdoor datasets
separately. This is due to the large differences in lighting between
the two scene types. These include differences in positional and
directional lighting, contrast, as well as different tones. Some
previous work train on one or the other (e.g., [8], and [4]), however,
we show that our network structure can model both scene types.
To obtain indoor data, we use the Laval HDR indoor dataset using
a warping operator on the environment map to account for indoor
spatial variation of the lighting [8]. For outdoor data, we found
there was limited HDR data. As such, we use the low dynamic
range (LDR) SUN360 dataset [36] and convert it to HDR using a
CNN based inverse tone mapping operator [37]. In total, we have
17,000 samples for our indoor dataset and 24,600 samples for our
outdoor dataset.

3.4 Training Details

To train each CNN model the HDR data needs to be normalized to
a reasonable range. The loss function also needs to be specifically
designed for the equirectangular format which we use for the RM.

Dynamic range normalization: Due to the high variation
between bright and dark values in HDR data, normalization is
required for efficient training. The normalization needs special
consideration to avoid crushing small values to 0 while reducing
large values. We normalize into exponent-space

Gipr = @(Gupr)” 2)

where Ggpr is the ground truth HDR RM that we aim to model.
Here we use o = 0.2 and 8 = 2.2 to compress the HDR into
a reasonable interval to help network modeling. The inverse of

Equation 2 is |
1
Pupr = E(PHDR*) B (3)

which will be used to recover the predicted RMs Pypgr* into full
HDR.

Loss Function: The predicted RM, Pypg, is in equirectangular
format, where each pixel should have different weights to account
for the distortion towards the poles. Thus, similar to [38], we train
the CNN to minimize a solid angle weighted loss function. For
both indoor and outdoor scenes, we use the L2 distance on the
pixel output:

* * 1 ul * *
Z(Gupr”,Pupr”) = NZHWQ(GHDR —PuprY)|l, 4
T

where w is the solid angle matrix and © represent pixel-wise
multiplication.

Training schedules: For both the indoor and outdoor datasets,
we randomly split the entire dataset for the training and testing sets
respectively. To train the CNNs, we use the ADAM optimizer [39]
with a mini-batch size of 64. The learning rate starts at 0.01 and
decays exponentially by a factor of 0.998 in every 30 steps. The
process typically converges in around 5 epochs using this dataset.
During fine-tuning, we initialize all the trainable parameters in
both encoder and decoder by corresponding parameters from prior
models. The training time was 4 hours per CNN using a NVidia
GeForce GTX 1080 Ti GPU which has 16GB of memory.
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4 AR/MR RENDERING USING PREDICTED RE-
FLECTION MAPS

Once the SCNN is trained, we are able to use it to generate
RMs. In this section, we detail the how to use the predicted
RMs for rendering and composition, followed by system specific
implementation details.

4.1 Rendering and Composition

Three RMs are required for rendering and composition: one to pro-
duce shadows, and another for the diffuse and specular component
(Figure 4). A set of RMs is generated from the SCNN (e.g., using
all 10 roughness levels, or a subset for optimisation). Then during
the rendering process, a virtual object is assigned a RM for the
specular component using its roughness parameter. If the roughness
parameter is between two roughness levels, we interpolate between
the two as commonly done in mipmapping [40]. The specular value
is obtained by looking up the pixel value in the selected RM using
the reflection vector. The diffuse value is obtained by sampling the
highest roughness (roughness= 1.0) RM using the normal vector.
Finally, the lowest roughness (roughness= 0.1) RM is used for
shadow casting. The virtual object and its shadow is composited
into the photograph using differential rendering [11]. We assume
geometry is provided for shadow casting (e.g., using ARCore or
ARKit’s real-time plane detection). To render the shadows, this
can either be done offline using ray tracing for static images, or
optimised using importance sampling or image processing [9] for
real-time rendering.

4.2 Implementation

We propose two ways to utilize our method for AR/MR: a server-
client or system-deployed setup. We used the server-client setup in
our tests. This removes the processing time and memory overhead
from the client, running the SCNN and rendering engine on a
remote server. We used a mobile phone as the client, and a desktop
machine with an NVidia GeForce GTX 1080 Ti GPU running an
instance of TensorFlow [41] as the server. The phone, using its back
facing camera, transmits a photograph to the server. The server
crops and resizes the photograph to match the input dimensions
to the SCNN, which then predicts 10 RMs. The client also sends
touch input data to manipulate an object’s position/rotation and
material roughness with a slider. The server, using the touch data
and predicted RMs, renders and composites the virtual objects into
the photograph, and transmits the result back to the phone. The
phone then displays the photograph with the composited virtual
objects to the user on the phone. The data-flow diagram is shown in
Figure 5. In our experiments, the SCNN took 0.2 seconds per layer
in the stack. The network latency was approximately 2 seconds.
Since we are using reflection maps, the rendering and composition
time is negligible, and could be moved onto the client side. The
total time from client to server and back to client is approximately
3 seconds. While transmission is not real-time, we did not find
it was necessary in most use cases where the lighting does not
fluctuate greatly between frames. Improvements to network latency
and reducing stack layers will move our method towards real-time.
Note that RMs across all roughness levels are transmitted together,
so users can change the material’s roughness in real-time. For the
system-deployed setup, the server processes are moved to the client
as well. This will introduce overhead in memory usage from the
SCNN, where a single CNN in the stack uses 240MB. This is
feasible on mobile devices if fewer levels in the stack are used.
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Fig. 4: Rendering and composition using the reflection maps
generated from the SCNN. The shadow is generated using the
roughness=0.1 RM, the diffuse component uses the roughness=1.0
RM, and the specular component uses its roughness parameter, in
this case 0.7, to select a RM in the range 0.1 to 1.0.
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Fig. 5: Server-client data-flow diagram.
5 RESULTS

In this section, we evaluate our results with a comparative user
study and error metrics against previous light estimation methods
for both indoor and outdoor scenes. This is followed by analysis
and discussion of the results. Both the user study and error metric
take into consideration various qualities of environmental lighting,
such as ambient tones and high frequency light sources.
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Fig. 6: The user study interface we used to compare predicting the
RM directly against predicting the EM which is then convolved.
Within each image, the left teapot uses a prediction, the right uses
the ground truth as a reference. We can also observe how, in this
case, the RM (right image, left teapot) better matches the reference
than using the EM (left image, left teapot).

5.1 User Study

The goal of this user study was to compare the subjective visual
quality of our method of predicting RMs at multiple roughness
levels directly against previous methods [3][4][S][6][7][8] that
predict the EM and then convolve it to a roughness level (or
multiple roughness levels). The hypothesis is that predicting the
RM at a specific roughness level yields visually higher quality
results than predicting the EM which is then convolved to the
specific roughness level. To evaluate this with a fair comparison, we
use our same network structure to predict the EM (roughness=0.1),
and convolve it to 10 different roughness levels. Then we use our
SCNN to generate the 10 RMs to compare against.

To evaluate the visual quality we implemented a user interface
(Figure 6) that presented two images side-by-side, each of which
contain two virtual teapots. One of the images uses the predicted
RM, the other uses the convolved EM. The order of methods (left,
right) was randomized during the study to avoid bias. For both
images, the teapot on the right is the reference teapot using the
ground truth EM, and the teapot on the left uses a predicted RM or
convolved EM. To test our hypothesis, we render a ground truth
virtual object (teapot) at a high roughness level (roughness=0.7),
and have users use a continuous roughness slider to change the
prediction to visually match the ground truth as close as possible
based on how similar the roughness of the surfaces appear. Since
there are 10 discrete roughness levels, we interpolate between
levels based on the continuous roughness slider.

Once they had matched the prediction to the reference we asked
the participants to answer four 5-Likert scale questions. The first
three questions evaluated the visual quality of our method regarding:
1. roughness, 2. colour, and 3. light directionality. The specific
statements are as follows: 1. The material’s roughness matches the
reference well, 2. The colour matches the reference well, and 3.
The light directionality matches the reference well. One possible

6
5] 5
4 #
3] 3
pa 2]
i 1
Q1 Q2 Q3 Q4 Q1 Q2 a3 Q4
(a) (b)

Fig. 7: Boxplot summarizing the results for the four questions in
the user study regarding indoor (left) and outdoor (right) images.
Orange uses the RM prediction, blue uses EM prediction which is
then convolved.

Q1 Q2 Q3 Q4
Indooy | Z=645%  Z=8019  7=-4.805  7=-6.063
00 p<0.001 p<0.001 p<0.001  p<0.001
Outdoor 272288 Z=3.931  7=3931  Z=-3.580
u p=0.022  p<0.001 p<0.001 p<0.001

TABLE 1: Statistical results for both indoor and outdoor images. p
values in bold indicate statistical significance.

limitation of our method is that we are predicting 10 discrete
roughness levels which do not ensure any consistency between
levels. As such, we ask a fourth question, 4. slider smoothness,
with the specific statement: 4. When moving the roughness slider, it
smoothly changes the material’s roughness. All four questions were
scored on the following scale: 1. Strongly disagree, 2. Disagree, 3.
Neutral, 4. Agree, and 5. Strongly agree (Note: The user interface in
Figure 6 contains an abbreviation of the question for convenience,
while the participants had the full question on separate sheet).
Finally, we also included a fifth metric to evaluate how close the
user set the roughness slider value to the reference’s roughness
value. Given that even the lowest roughness RM is already blurred,
the hypothesis is that the user would set the roughness slider below
the reference’s roughness value.

We performed the user study with 10 images for both indoor
and outdoor scenes (20 images total), each under different lighting
conditions (e.g., clear sky, overcast, complex interiors, dark areas,
etc.). We had a total of 36 participants (18 for indoor, 18 for
outdoor). The participants are students and staff from the university,
and were recruited through our university mailing list. The task
was conducted using a Dell Monitor (Dell 24 inch SE2419HR), to
ensure similar colour calibration for all participants.

To evaluate the proposed metrics we conducted a statistical
analysis of the results. We used the Wilcoxon signed ranks test
to indicate statistical significance in both indoor and outdoor data.
For the distance variable, because of its continuous characteristic,
we conducted a Shapiro-Wilk test to test for data normality. Since
both data inputs from the indoor and outdoor follow a normal
distribution, we also conducted a Wilcoxon Signed ranks test
for these variables. The result from the statistical analysis is
summarised in Figure 7 and Table 1. The detailed analysis is
in Section 5.3.
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Fig. 10: Outdoor comparison across all roughness levels.

5.2 Metric Evaluation

We also evaluate the accuracy of our RM predictions with three
metrics based on ambient lighting, directional lighting, and dynamic
range. We compare our indoor results with LeGendre et al. [5]
and Gardner et al. [8] and outdoor results with LeGendre et
al. [5] and Hold-Geoffroy et al. [4]. We compute these metrics

on the test dataset, which has 198 indoor and 198 outdoor RMs.

We also do this for each of the 10 roughness levels for a total
of 3,960 comparisons. For a fair comparison, we retrain our
SCNN with a small FOV input image when comparing against
LeGendre et al. and a wide FOV image when comparing against
Gardner et al. and Hold-Geoffroy et al. Figure 8 shows the lowest
roughness (environment map) results for both indoor and outdoor
scenes. We can observe how progressive learning improves the
lowest roughness level. Figure 9 and 10 show the results across

all roughness levels for indoor and outdoor scenes respectively.

Accuracy is improved across all levels in most cases. The detailed
analysis is in Section 5.3. We calculate the error between the ground

truth RM and the prediction using the metrics, and aggregate the
result across the test data set. The metrics are defined as follows:

Ambient lighting: We use the root mean squared logarithmic
error (RMSLE) to measure the low frequency environmental colour
and tone of the scene. The logarithmic scale places more emphasis
on the ambient lighting rather than bright light sources.

Directional lighting: We measure the angular accuracy of the
high frequency lights in the RM by first detecting the directions of
the high frequency light sources [9] in the RM. We then compute
the average angular error between the nearest pairs of lights in the
prediction and ground truth.

Dynamic range: This is the relationship between high and low
frequency lighting, which impacts how bright glossy highlights
or how dark shadows appear in the rendered scene. We use the
following to compute contrast:

max(RM) — u
u

where max returns the maximum intensity value and u is the

; ®)
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Environment Map

Environment Map

mean value in the RM. We use the log of this equation to
follow perceptual uniformity of brightness. We take the squared
difference between contrast measurements when computing a
distance between two RMs.

For all three metrics, the error is computed using the ground
truth EM which is mathematically convolved to a RM, against each
model’s predicted EM which is also mathematically convolved in
all cases except one, which is our progressive method (annotated
with a ”*”). In this case, we use our specific roughness level in our
SCNN to predict the RM directly.

Qualitative results: We also show qualitative results with
objects rendered at various roughness levels for indoor scenes in

Figure 11, 12, and 13, as well as outdoor scenes in Figure 14, 15,

and 16. Across each example we can observe improved overall

lighting and blending quality with the background photograph.

o n"'

0.1 0.
Fig. 11: Indoor, scene 1.

Flg 12: Indoor, scene 2.
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Note: The input photo is used as a background for compositing
into, however our model as well as LeGendre et al.’s used a smaller
FOV with a 16:9 aspect ratio (portrait).

5.3 Analysis and Discussion

Through both the error metric and user study evaluation, we show
that there is improved accuracy when predicting the RM directly
(’progressive*”) as opposed to predicting the EM and convolving
afterward (“progressive” and the other approaches).

The results of the user study are summarised in Figure 7a
and Figure 7b for indoor and outdoor scenes respectively. All
of these results have statistical significance, as summarised in
Table 1. Statistical analysis found that the RM method was the
best in terms of visual quality regarding roughness, colour, and
light directionality for both indoor and outdoor scenes. In terms
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Environment Map

of slider smoothness, we expected to find the RM to be worse
since the EM method is mathematically convolved, though we
were interested in how much worse. We found that generally the
RM method was sufficiently smooth enough, with the median score
above the neutral line in both indoor (Z=-6.3 p<0.001) and outdoor
conditions (Z=-8.551 p<0.001). Interestingly, the EM method did
not score perfect results - which is effectively a measurement of the
error introduced by interpolating between discrete levels. For the
roughness slider distance, we found that users undershot the slider
value for both the RM and EM method. The RM was below the
reference’s roughness values by 0.073889 and 0.059636 on average
for indoor and outdoor respectively, and for the EM it was below
the reference by 0.121667 and 0.055758 on average for indoor and
outdoor respectively.

The error metric evaluation is summarised in Figure 8, 9, and

1 0.
Fig. 14: Outdoor, sunny.
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10. Figure 8a shows that our progressive structure only slightly
improves ambient lighting for both indoor and outdoor scenes. We
can also observe slight improvements across all roughness levels in
Figure 9a and Figure 10a. Figure 8b shows that our method is able
to predict light directions more accurately. Figure 9b and Figure
10b show that the RMs benefits from the progressive training (note
that the y-axis is normalized, where an angular error of 180° is
mapped to 1.0). The progressive nature of our SCNN is able to find
strong candidate directional light sources at the high roughness
levels, which then propagate through to the low roughness network.
This is particularly important when using the low roughness RMs
for shadow casting. Finally, Figure 8c shows the dynamic range
results, where our method is not as accurate as prior work. Hold-
Geoffroy et al. [4] is able to accomplish this as they use a sky
model which can reliably place a sun into the prediction. Gardner et
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Fig. 16: Outdoor, overcast.

Fig. 17: Failure cases where our model predicts more than one
light where there should only be one (the sun).

al. [8] on the other hand use two CNNs in a two-stage scheme. One
focusing on predicting light locations from LDR data combined
with a light detector, and the other focusing on light intensity using
HDR data to fine-tune the pre-localized light sources.

6 CONCLUSION

We have presented a SCNN structure for recovering HDR RMs
from LDR limited field of view indoor or outdoor photographs. The
SCNN is able to produce RMs with varying material roughness.
Using a progressive training scheme from high to low roughness,
the SCNN is able to obtain higher accuracy predictions. This
enables high quality rendering of virtual objects when compositing
into photographs. Using the SCNN, we are able to query CNNs at
each roughness level, allowing for efficient rendering using RMs,
without the need for convolving environment maps at rendering
time.

Limitations and Future Work: While our RM predictions
improve upon the state of the art, we found that there are still
more improvements to be made. The SCNN is comprised of 10
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CNN layers, which has a high memory overhead. Future work
could consider using fewer roughness layers, or smaller network
models. We also found that the overall accuracy in this field
should be improved, where the directional metric shows the average
angular error is over 15°, which is an angle that would produce
obvious incorrect shadow angles and highlights. The contrast of
our lowest roughness prediction is not as optimal as previous
approaches (e.g., Figure 13), 0.1 roughness, where Gardner et al.
is able to obtain a clear specular highlight), which indicates that
a hybrid approach using our RM prediction and light detection
could be considered. In this paper, we used the Phong reflectance
model, which could trivially be changed to the GGX model since
there is a corresponding roughness parameter. Future work could
consider extending this further to take into account more complex
models, such as layered or anisotropic materials. While we produce
ambient tones that are plausible for most material types, pure
specular reflections will produce obvious artifacts as there is no
high resolution detail. Our SCNN produces RMs with various
low and high frequency peaks, however, outdoor lighting usually
contains only a singular light source (the sun), whereas our results
can on occasion produce multiple lights (Figure 17). We tested our
system with a server-client setup, however to deploy on mobile
devices, optimisations such fewer layers in the SCNN and using
MobileNetV2 [42] could be considered for future work.
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