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Abstract—Multiscale virtual environments (MSVEs) are vir-
tual environments that encapsulate elements with different scales
within a same shared space. They may contain elements with
extremely different levels of scale in the same environment and
can be found in geographical maps and engineering virtual
environments (VEs). Due to its complexity and diverging levels
of scale, this type of environment could be accessed using its
hierarchical structure to navigate between the levels of scale. But,
in geographical maps and engineering VEs users may need to
freely navigate through the levels of scale seamlessly to provide
improved spatial knowledge. Common approaches to navigate
within these 3D virtual environments are based on the Automatic
Speed Adjustment approach, where the scene is pre-processed in
a data structure and then accessed in real-time to determine
optimal speed. A common trend is to migrate this process from
the CPU to GPU, but the works that use this approach are still
limited to static and/or smaller virtual environments. As the scene
grows in complexity, the computational power needed to render
the 3D scene and determine optimal speed may be too costly. We
propose RMNS (Remote Multiscale Network System) to solve this
problem by using a service-oriented approach to compute speed
and is asynchronously accessed to determine optimal speed. Our
results show that our approach enables the use of dynamic scenes,
as the rendering and speed adjustment are decoupled. Finally, the
asynchronous nature of our approach showed that the response
time is enough to support automatic speed adjustment, while
maintaining the rendering in real-time.

Index Terms—Computer Graphics, Methodology and Tech-
niques, Interaction techniques, Three-Dimensional Graphics, Re-
alism, Virtual Reality

I. INTRODUCTION

The complexity of some scenes such as geographical and
engineering VEs brings about the need to navigate on elements
of the scene in different scales. These types of scenes are called
Multiscale Virtual Environments, and could contain objects in
extremely varying levels of scale [1]–[4]. Such scale varia-
tions make it difficult to navigate these environments. Indeed
different scales require repetitive and unintuitive adjustments
in either velocity or scale, depending on which objects are

closer to the observer, to achieve a comfortable and stable
navigation. Examples of these types of environments can be
found in different areas of expertise such as Medicine [5]–[8],
Geography [9] and Engineering [10], [11]. In some cases, the
use of multiscale techniques can also benefit some applications
not inherently multiscale to facilitate manipulation of objects
and navigation throughout the virtual model [12]–[14], to
overcome physical constraints of the physical environment and
to support collaboration in virtual environments [15], [16].

A form of tackling the navigation is by using Level of Scale
(LoS) solutions. In this family of techniques the user may
manually control their user representation and VE size [9],
use visual landmarks or use hierarchical structures to nest
each of the elements of the same level of scale and discretely
navigate in each of them [17]. Another way to address the
multiscale navigation problem is by using automatic speed
adjustment techniques (ASATs) [11], [18], [19], which use the
closest geometry position as input to heuristics that determine
the optimal navigation speed at a given moment. This sort
of method is best suited for VEs based on geographic infor-
mation, as the user needs to freely explore the environment in
order to obtain better spatial understanding. A classic example
of this approach is the Cubemap [20], which uses 6 rendering
passes to calculate the distance between the camera and the
environment, each in a different direction to cover all the
environment and determine optimal speed of navigation.

As the virtual environment increases in size and complexity,
the computational power needed to calculate 6 rendering
passes would be too high, and in these cases the use of such
techniques may become impractical. A recent overcome to
this problem is by using spatial structures such as Kd-trees,
which are commonly used to accelerate rendering of objects
in multiple scales [21], [22]. Taunay et al. [19] used a similar
structure to pre-process and access the scene in the GPU to
determine the movement speed in real time. However, this
approach is still not viable for use in dynamic scenes, where



the objects are in motion. As the optimal speed calculation
is shifted from the GPU to the CPU, it is possible to use a
distributed approach to overcome this issue.

In this paper we propose RMNS (Remote Multiscale Net-
work System), in which we use a distributed remote system
to tackle the multiscale navigation problem. This system
decouples the rendering and optimal speed calculation, where
the rendering can be done at the user’s computer, which creates
a spatial structure at the remote server, following an approach
similar to the work by Taunay et al. [19], which is accessed
asynchronously to determine optimal speed. Our results show
that the use of RMNS enables real-time rendering and quick
response times, which enables its use for complex dynamic
multiscale scenes.

In the following sections we clarify the rationale for the
multiscale navigation problem used in our system design, ac-
companied by a comprehensive description and a performance
test, followed by findings and possible instructions for future
work.

II. RELATED WORK

The main classification of multiscale environments differs
on how the system handles the transitions between the different
levels of scale. On the Level of Scale (LoS) type the user navi-
gates through the different levels of scale by scaling himself or
the environment; on Automatic Speed Adjustment Techniques
(ASATs), the transition is made by adjusting automatically the
speed between the levels of scale for a seamless navigation.

The different levels of scales of these environments present
themselves with elements that can be represented by an
hierarchical structure, where each part of the structure is a
context of objects in the same level of scale. Kopper et al.
[6] uses the concept of visible landmarks [13] to navigate
through the hierarchical structure of a virtual representation of
the human body. They also concluded that automatic scaling
is more efficient in comparison with manual scaling when
navigating through the visible landmarks. Bacim et al. [5], on
the other hand uses a tree-like structure to navigate through
the different levels of scale of the human body. In other
cases where the environment represents spatial data, such as
maps and oil fields, it is important for the user to navigate
freely on the environment to gain better spatial knowledge.
But freely navigating in a 3D virtual environment can prove
to be problematic, even for the most experienced users [23],
and possibly deal-breaking for laymen, specially when dealing
with massive multiscale scenes. On this type of environments
the system should be responsible for determining the optimal
speed according to the level of scale that the user is currently
in.

The speed of navigation on ASATs-like environments is
based on the complexity of the model. In some cases the
user restricts its trajectory by establishing a point of interest
(POI) [24] and navigating towards it. Argelaguet et al. [25]
propose a perceptual-based approach based on visual attention
models, which is based on optimizing navigation speed at each
point of a camera path according to the desired perceived

motion. Another example of this type of work is the Drag
’n Go technique, where the user utilizes multi-touch gestures
to navigate to a POI with logarithmic speed [26]. But in
some cases the use of linear speed to navigate in virtual
environments is not efficient because of the high complexity
and multiscale nature of some environments. On oil fields (a
type of engineering scenario) for example, there are elements
varying in a scale of 1:107 from the smallest object (an oil tube
with a 15cm radius) to the largest one (a seismic object with
possibly kms of extension in all three dimensions). In such
complex scenes there is normally the need of using methods
to analyse the virtual scene to determine the best speed on a
given level of scale. While Freitag et al. [27] use the viewpoint
quality, which is the amount of relevant of information on the
view frustum, other works use the Cubemap [11], [20], [28],
which consists on storing 6 render passes to choose the optimal
velocity by fetching the nearest point to the user at a given
frame.

Another approach to tackling the 6DOF multiscale problem
was the adaptive navigation technique by Argelaguet and
Morgan [18], where not only the observers navigation speed is
automatically adjusted, but the camera’s rotation speed as well,
in order to reduce jerkiness during the interaction. Argelaguet
and Morgan, instead of taking in as input the nearest object,
worked with a combination of: a Time to Collision map, a
grid where each cell represents the time to reach each rendered
pixel given the user’s current speed; and an Optical Flow map,
a grid where each cell represents the amount of displacement
(in screen space) between two consecutive frames. Both maps
when applied to a custom algorithm can provide - what
the author describes - as the perceived user’s speed, which
when compared to a hard coded optimal perceived speed (by
configuration) serves as a reference for maximum translation
and rotation variations between frames.

However, the use of methods that rely on the distance to
surrounding geometry can be troublesome in indoor parts, as
the user is too close to the geometry (e.g., walls and floors).
Freitag et al. [27] solve this problem by using Viewpoint
Quality Estimation (VQE) algorithms [29] to compute navi-
gation speed according to the amount of relevant information
on the virtual scene. This algorithm is based on the concept
that scenes with higher viewpoint quality (high detailed rooms,
for example) have more interesting aspects to see and objects
to avoid, requiring low speeds and scenes with low viewpoint
quality (empty corridors, for example), have less objects to
collide and require higher speeds.

These algorithms also have another problem: the render
bottleneck, as the algorithm needs to determine optimal speed
by computing distances between the objects and the user
in each frame. Taunay et al. [19] solve this problem by
pre-processing the scene in a spatial structure such as kd-
tree, that is rapidly accessed in run-time to determine user’s
velocity at a given frame. To overcome performance issues, the
authors successfully use a combined GPU and CPU solution
to determine optimal speed. This approach considers both
visible and not visible objects to solve the navigation problem.



That work also presents an extensive user evaluation, which
shows that its use is recommended for both experienced and
inexperienced users. The problem of this approach is the
inefficiency of navigating in dynamic scenes, where the kd-
tree needs to be reconstructed at each frame. Hildebrandt et
al. [30] overcome this issue by using parallel computing with
the use of a service-oriented architecture on an image-based
geographical navigation. However, this solution is still limited
to image-based solutions, thus not suitable for general 3D
scenes.

In the present paper, we aim to combine both approaches –
the spatial partitioning heuristics [19] and parallel computing
[30] – to improve efficiency of previous works by using
an approach suited for both dynamic and static 3D virtual
environments.

III. REMOTE MULTISCALE NETWORK SYSTEM :
AUTOMATIC SPEED ADJUSTMENT AS A SERVICE

In this work, we aim at improving the limitation obtained
by the work proposed by our previous work [19], which was
limited to static scenes. Previous work completely shifted the
automatic speed adjustment calculation from the GPU to the
CPU, so we are no longer tied to a mandatory local solution,
i.e., when the nearest point was obtained from the render
process, it necessarily had to be done on a machine where
the entire 3D scene is being rendered. This limitation does
not apply when dealing with an abstract point grid only in the
CPU.

A natural instinct would be to separate the multiscale
calculation into its own thread, and allowing us to increase
our number of points budget without worrying about impacting
other CPU processes (e.g., scene graphs). However, this would
still limit any practical solution to a single programming
language or specific framework, without any necessity. The
multiscale speed adjustment is a separate abstract representa-
tion of any given scene and has no need to be even in the
same machine.

In order to offer a completely generic and agnostic solution
to the multiscale navigation problem, we decided to create a
service dedicated exclusively for solving it, allowing not only
local but also remote access. In a nutshell, the service would
allow any consumer to register points to it, populating a remote
k-d tree, and later on querying which optimal velocity should
be used with a given point in space and camera frustum.

This solution was inspired by the microservice architecture
[31], where systems are broken into several distributed services
focused on offering a solution for a single problem. This
mindset follows the popular Unix philosophy of “do one
thing, and do it well”, and not only is effective for ensuring
modularity between components, but also conveniently fits
well into the current cloud oriented direction the tech industry
tending toward.

Therefore, we developed an agnostic, isolated and scalable
service that offers an API for obtaining the optimal multiscale
speed solution for any given 3D scene, which uses the heuristic
presented by Taunay et al. [19]. In this chapter, we will dive

into the technical specifics of the RMNS service solution,
present our performance results, and examine what other
known problems this proposed solution helps us solve.

The RMNS is an open source initiative and all the source
code, along with its documentation, tests and examples, is
currently available at GitHub [32].

A. Architecture

Our server solution, which we named Remote Multiscale
Navigation System (RMNS), is responsible for:

• Receiving and registering information relevant for auto-
matically determining the navigation speed of a given
scene

• Answering which is the optimal velocity for navigation
with the given inputs and previously registered informa-
tion

The server is separated in two layers. The top layer runs
on Node.js’s [33] javascript V8 engine, which is responsible
for data checking, high-level logic and all HTTP communi-
cation. This top layer binds seamlessly with the lower-level
layer running on C++ process, which is responsible for all
expensive geometric computation. All communication between
both layers are asynchronous in order to avoid bottlenecks. See
Figure 1.

Fig. 1: RMNS architecture.

Custom settings such as the KD-tree cell grid size and field
of view (FOV) reduction - if any - are made by configuration
and cannot be updated during execution.

A server can act following one of three different roles:
stand-alone, master or slave. The former, as the name implies,
is an independent approach where the entire system runs on
a single Node.js process. The latter two are complementary
when working with a distributed solution. They allow, for ex-
ample, that while one slave only deals with finding the nearest
point, another can deal with just finding the nearest visible
point, therefore parallelizing both efforts. In this scenario the
master’s role involves managing the communication between



the slaves, as well as dealing with all business logic and the
heuristic calculation.

The distributed approach leaves room for scaling scene
complexities as well. Two different processes could be re-
sponsible for finding the nearest point in each half the scene,
leaving the master to decide later on which one is closest. This
improvement however could not be tackled during in time for
this work and is postponed for future versions.

B. Dealing with Dynamic Objects

A downside from the CPU oriented nearest point solution
is dynamic object support. While the GPU can seamlessly
answer which is the nearest point in a given frame, without
even having to be aware which objects are dynamic or not,
rebuilding the k-d tree every frame is completely unfeasible
for the CPU solution. This limitation did not pass unnoticed
during the research and was given a lot of thought.

However, with a distributed system in place, we no longer
need to be tied to the k-d tree exclusively. Imagine if while one
process calculates the nearest point with the already known
heuristics [19], a second process would calculate the nearest
point taking into consideration only a relatively small subset of
primitive objects (e.g. spheres and/or cubes). Figure 2 attempts
to illustrate such a solution:

Fig. 2: Distributed heuristic approach.

The advantages of using primitive objects are that they are
cheaper to re-register on a frequent basis (data transfer wise)
and do not demand rebuilding any spatial structure. Instead of
transmitting several thousand points (or more) with a sphere
we would need only a center and radius, for example. These
primitive objects are stored in a list that on every request would
be iterated linearly storing the nearest point found on each
object, and returning only the closest one of all. Currently
only spheres are supported as dynamic objects.

Since we are dealing with a list, and will be iterating it
linearly, a reasonable suspicion could be raised over scalability

issues. A benchmark was conducted with a mid-range server in
order to measure this approaches performance, which proved
that the bottleneck was not the linear loop as would be
expected, which even with 1M spheres managed to maintain
less than 40ms necessary taking into account both nearest
global and visible points, but the limit of the body of the
HTTP request package itself. In other words, the system can -
within an acceptable time budget - register/update spheres in
the scale of millions and on top of them calculate the optimal
velocity heuristic, the issue is being able to update all sphere
positions when an HTTP request can usually only transfer
sphere data in the scale of tens of thousands. A workaround
can be sending multiple sphere registration requests at a given
frame, but in this case no test is needed to acknowledge
that this approach would definitely not scale. Therefore, this
dynamic-object solution is currently limited to a scale range
of tens of thousands of objects.

It’s worth noting that running RMNS in a distributed topol-
ogy is not mandatory for dealing with scenes with dynamic
objects. The stand alone mode also offers this feature, and if
the scene’s complexity and the machine’s processing power
allow it, navigation works seamlessly.

C. Consuming the API

All calls to the RMNS are by design asynchronous. This
may lead to unfamiliar scenarios in computer graphics appli-
cations, such as a later call returning before a previous one.
In a scenario where the current optimal speed is raising or
decreasing in a constant ratio, responses that return from the
server out of order may lead to a shaking and unstable naviga-
tion. A solution for this problem is to return in every answer
a timestamp, making the client responsible for verifying and
eventually ignoring if any answers are already deprecated. The
figure 3 exemplifies this situation.

Fig. 3: Navigation shaking for out of out responses.

Currently there is support for point and basic geometry reg-
istration. The latter can, and should, be updated frequently dur-
ing navigation, while the former must be registered previous
to interaction, as rebuilding the point spatial structure in real-



time is not supported. Any calls made to the point registration
APIs during interaction will return an error response.

D. Solar System Experiment

As a demo test for the RMNS, we created a 3D scene
representing the solar system, where each planet is represented
by a sphere geometry, with their positions being updated on
a frequent basis as dynamic objects, and the asteroid belt
between Venus and Jupiter being represented by a 2M static
size point cloud. The theme was chosen given the multiscale
nature of the scene, that is also well known by the wide public.
Figure 4 displays a screen-shot of the demo, which runs in the
Unity3D engine (with C# code), proving the agnostic nature
of the service. The demo can also be found at the project’s
web page [32], and is a good reference as an example on how
to consume the RMNS.

Fig. 4: Solar system demo.

E. Performance

The time taken for the RMNS to answer the optimal
navigation speed is formed by the round-trip time plus the
processing time on the server side. Taking into consideration
the scenario where each process is run in parallel, as well
as the fact that the optimal velocity can only be achieved
when each of its answers are made available, we can conclude
that the service is as fast as its slowest slave answer, plus
the round-trip time. Figure 5 illustrates this behavior. In this
example, processes A, B and C could be the nearest global
point, the nearest visible point and the nearest visible and
global sphere processes respectively, or any other combination
of distributed processes as the system’s users see fit. In fact,
there could be more or less than three processes, since the
service’s generic architecture allows any number of distributed
setups. Each distribution configuration should be fine-tuned
depending on each scene’s nature, targeting the minimization
of the lengthiest process.

We have managed to obtain a 140ms answer time perfor-
mance accessing from Rio de Janeiro, Brazil, a server running
the RMNS in a data center in Texas, USA. From the 140ms
total time, 20ms were from the round-trip and 120ms from

Fig. 5: Round-trip path.

the processing time bottleneck. This result was achieved with
a single server. When distributing the service with a master
server and two slaves performing the nearest point heuristic, a
90ms roundtrip time was achieved. In the distributed scenario,
the bottleneck was the visible nearest point process, with
an average 70ms processing time, that when added with the
20ms round-trip we reach the 90ms mark. Since RMNS still
can’t break a scene’s k-d tree into separate processes this
bottleneck currently cannot be any more parallelized. Now,
despite that 140ms - or even 90ms - can be considered high-
processing times in traditional synchronous computer graphic
applications, the system’s asynchronous nature does not affect
in any way the main process, and therefore the roundtrip
time is only relevant regarding how much it affects the user’s
navigation experience. During the tests, the delay did not
appear to present any significant different - positive or negative
- to the navigation experience. All performance tests were run
working with an interval of approximately 10 requests per
second, with a number of points in the scale of millions (4M
to be exact) and spheres in the scale of thousands (5k to be
exact), on top of mid-range virtual machines.

IV. CONCLUSION

Navigating in a multiscale environment is still a difficult
and unnatural task to perform. Commonly, researchers propose
techniques that analyze the scene and optimally determine
speed in order to facilitate navigation. However, analyzing
such scenes is a CPU and GPU-intensive procedure and may
not be practical for rendering effective navigation in most com-
plex scenes in real-time. Other solutions use spatial structures
to pre-process the scene and determine speed in real-time,
but the cost of pre-processing the scene make this solution
not possible to deal with dynamic scenes, where objects are
in motion. We overcome this problem by proposing RMNS
(Remote Multiscale Navigation System), that uses a service
distributed approach to tackle the automatic speed adjustment
problem. RMNS is an initiative to make the solution available
to the scientific community and an universal solution for
navigating in dynamic multiscale virtual environments. This
system is an open-source solution, which enables for parties
interested in understanding or contributing towards the service.



It also succeeds in isolating the problem from the main navi-
gation system, providing an high level and language agnostic
architecture interface, while also isolating the automatic speed
velocity computation by design. We were also able to suggest a
simple and complementary alternative by working with basic
geometries that, while not being as generic as the previous
GPU approach, can be proven useful depending on the scene
being dealt with.

For future works, we intend to explore the idea of breaking
the scene into separate sub-scenes, in order to allow multiple
processes to answer the nearest-point question in parallel. This
feature will prove necessary the moment we start dealing with
larger and more complex scenes where the grid strategy will
not be able to reduce the total number of points enough to
gain efficiency. We also intend to include support to more
basic geometries - i.e., cubes and capsules - with the objective
of offering more fine tuning and versatility when dealing
with dynamic objects. Finally, on a different front, we plan
to study the possibility of working with spatial structures
that could allow reconstruction in real time, e.g., a more
efficient variation of the k-d tree, or a BVH (bounding volume
hierarchy). In the case of the BVH, it not only may prove
helpful for dealing with dynamic objects, but it also has
potential to be used as an alternative to the grid structure built
during the pre-processing phase, with the goal of maintaining
part of the multiscale nature of a given scene.
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